hexopyranosyl rings. The $4^{\prime}-\mathrm{OH}$ [$\mathrm{C}^{\prime} A-\mathrm{C}^{\prime} A-$ $\mathrm{O}^{\prime} A-\mathrm{H} 6 A=-8$ (1) and $\mathrm{C} 5^{\prime} B-\mathrm{C}^{\prime} B-\mathrm{O}^{\prime} B-$ $\mathrm{H} 6 B=30(2)^{\circ}$] and $3^{\prime \prime}-\mathrm{OH}\left(\mathrm{C}^{\prime \prime} A-\mathrm{C} 3^{\prime \prime} A-\mathrm{O}^{\prime \prime} A-\right.$ $\mathrm{H} 13 A=93 \cdot 1$ (8) and $\mathrm{C}^{\prime \prime} B-\mathrm{C}^{\prime \prime} B-\mathrm{O}^{\prime \prime} B-\mathrm{H} 13 B$ $\left.=74 \cdot 9(7)^{\circ}\right]$ torsion angles are moderately different. The largest difference in torsion angles occurs with the $4^{\prime \prime}$-hydroxyls $\left[\mathrm{C}^{\prime \prime} A-\mathrm{C}^{\prime \prime} A-\mathrm{O} 4^{\prime \prime} A-\mathrm{H} 15 A=\right.$ 128.4 (7) and $\mathrm{C} 5^{\prime \prime} B-\mathrm{C} 4^{\prime \prime} B-\mathrm{O}^{\prime \prime} B-\mathrm{H} 15 B=$ $\left.64 \cdot 6(8)^{\circ}\right]$.

Intermolecular hydrogen bonding (Table 3) occurs between $\mathrm{O}^{\prime \prime} A$ and $\mathrm{O} 3^{\prime \prime} B\left[\mathrm{O}^{\prime \prime} B \cdots{ }^{\circ} \mathrm{O}^{\prime \prime} A=2 \cdot 80\right.$ (1) \AA and 150°] of the two independent molecules. In addition, hydrogen bonding occurs between the ketonic O atom $\mathrm{O} 4 A$ and the phenolic O atom $\mathrm{O}^{\prime} B$ [$\mathrm{O} 4^{\prime} B \cdots \mathrm{O} 4 A=2 \cdot 67$ (1) \AA and 179°] and between the ketonic O atom $\mathrm{O} 4 B$ and the hydroxyl O atom $\mathrm{O}^{\prime \prime} A$ [$\mathrm{O} 4^{\prime \prime} A \cdots \mathrm{O} 4 B=2 \cdot 81$ (1) \AA and $\left.150^{\circ}\right]$. There is also a network of hydrogen-bonding interactions between the aciculatin molecules and the water molecules which stabilizes the crystal lattice.

This work was supported in part by grant No. GM39S26-02 from the National Institutes of Health. JAK thanks the NIH for postdoctoral support under this grant.

References

Breton, M., Precigoux, G., Courseille, C. \& Hospital, M. (1975). Acta Cryst. B31, 921-923.

Carte, B., DeBrosse, C., Offen, P., Carr, S., Hemling, M., Berry, D. E., Mackenzie-LoCastro, L. \& Westley, J. W. (1991). Tetrahedron. Submitted.

Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.

Etter, M. C., Urbanczyk-Lipkowska, Z., Baer, S. \& Barbara, P. F. (1986). J. Mol. Struct. 144, 155-167.

Furukawa, M. \& Iitaka, Y. (1974). Tetrahedron Lett. pp. 3287-3290.
Furukawa, M. \& Iitaka, Y. (1980). Acta Cryst. B36, 22702276.

Furukawa, M., Itai, A. \& Iitaka, Y. (1973). Tetrahedron Lett. 1065-1068.
Glusker, J. P. \& Rossi, M. (1986). Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and StructureActivity Relationships, edited by V. Cody, E. Middleton Jr, \& J. Harborne, pp. 395-410. New York: Alan R. Liss.

Hayashi, T., Kawai, S., Ohno, T., Iitaka, Y. \& Akimoto, T. (1974). Chem. Pharm. Bull. 22, 1219-1226.

Jurnak, F. A. \& Templeton, D. H. (1975). Acta Cryst. B31, 1304-1309.
Mariezcurrena, R. A. (1978). Acta Cryst. B34, 2322-2324.
Mayer, F. \& Cook, A. H. (1943). The Chemistry of Natural Colouring Matters. New York: Rheingold.
Rossi, M., Cantrell, J. S., Farber, A. J., Dyott, T., Carrell, H. L. \& Glusker, J. P. (1980). Cancer Res. 40, 27742784.

Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Shoja, M. (1989). Acta Cryst. C45, 828-829.
Shoja, M. (1990). Acta Cryst. C46, 517-519.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3176-3187.
Ting, H.-Y., Watson, W. H. \& Dominguez, X. A. (1972). Acta Cryst. B28, 1046-1051.
Tomlin, D. W. \& Cantrell, J. S. (1990). Acta Cryst. C46, 519-521.
Vijayalakshmi, J., Rajan, S. S., SrinivaSan, R. \& Ramachandran Nair, A. G. (1986). Acta Cryst. C42, 17521754.

Vleggaar, R., Kruger, G. J., Smalberger, T. M. \& van den Berg, A. J. (1978). Tetrahedron, pp. 1405-1408.
Watson, W. H., Kashyap, R. P., Gao, F. \& Mabry, T. J. (1991). Acta Cryst. C47, 459-461.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Structure of Cortivazol, $11 \beta, 17 \alpha, 21-T r i h y d r o x y-6,16 \alpha$-dimethyl-2'-phenyl-2' H -pregna-2,4,6-trieno[3,2-c]pyrazol-20-one 21-Acetate

By Edmund W. Czerwinski
Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch, Galveston, Texas 77550, USA

(Received 7 February 1991; accepted 29 May 1991)

Abstract

C}_{32} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}, M_{r}=530 \cdot 7\), monoclinic, $C 2$, $a=30 \cdot 625$ (5), $b=6 \cdot 229$ (2), $c=15 \cdot 289$ (2) $\AA, \beta=$ 93.86 (2) ${ }^{\circ}, V=2909.8 \AA^{3}, Z=4, D_{x}=1.211 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.5418 \AA, \mu=6.2 \mathrm{~cm}^{-1}, F(000)=1136$, $T=292 \mathrm{~K}$, final $R=0.047$ for 2415 reflections with I $>2 \cdot 5 \sigma(I)$. All bond lengths and angles are within normal limits. Ring A with two double bonds is not

planar, but is in the $1 \alpha, 10 \beta$ half-chair conformation. Ring B is in a $9 \alpha, 10 \beta$ half-chair conformation distorted towards a 9α sofa. Ring C is in the expected chair conformation, whereas ring D is in the 13β envelope conformation. The C20, C26, C27 and N29 substituents are equatorial, $\mathrm{O} 11, \mathrm{C} 18$ and C 19 are β axial, and O 17 and C25 are α axial. Rings C and D
and their substituents (except for the C19 on cortivazol) of dexamethasone, dexamethasone acetate and cortivazol are superimposable on each other with an r.m.s. difference of $0.031 \AA$. The torsion angles of the A / B ring junction of cortivazol are $-33 \cdot 3 / 34 \cdot 6^{\circ}$, whereas the angles of the same junction in dexamethasone and dexamethasone acetate are $-5 \cdot 1 / 55 \cdot 4$ and $-3 \cdot 5 / 54 \cdot 5^{\circ}$, respectively. There are no significant differences in the B / C and C / D ring junctions. This means that the steroid skeleton of cortivazol is slightly bent towards the α face at a lesser angle than that found in dexamethasone and dexamethasone acetate. It is suggested that instead of the 3 -keto group, it is the accessibility of the α and β faces of rings B, C and D, as well as the bending and twisting of the molecule which may be the predominant factors that determine the activity and binding specificity of the glucocorticoid to the appropriate receptor.

Introduction. Studies have shown that for a compound to possess glucocorticoid activity, the 3-keto and Δ^{4} double bond of the pregn-4-ene-11 β-ol-3,20dione moieties must be present (Goldstein, Aronow \& Kalman, 1974; Liddle, 1974). Duax, Griffin, Weeks \& Wawrzak (1988) reported that the glucocorticoid receptor prefers a 4 -en-3-one A ring that is bowed toward the α face of the steroid skeleton. This is seen in structures such as dexamethasone (9α -fluoro-11 $\beta, 17 \alpha, 21$-trihydroxy-1 6α-methyl-1,4-preg-nadiene-3,20-dione) which have a 9α-fluoro substituent or an additional unsaturation at $\mathrm{Cl}-\mathrm{C} 2$ (Duax et al., 1988). Cortivasol 11 $\beta, 17 \alpha, 21$-trihydroxy6,16 α-dimethyl-2'-phenyl-2' H-pregna-2,4,6-trieno-[3,2-c]pyrazol-20-one 21 -acetate and its derivative, deacylcortivasol, are glucocorticoid compounds whose structural formulae would indicate that these molecules, which have a phenylpyrazole ring fused to the A ring in lieu of the usual 3 -keto group, would not be active, nor would they bind to the glucocorticoid receptor. However, it has been shown that cortivazol and deacylcortivazol are more effective than dexamethasone in terms of cytotoxicity, glutamine synthetase induction and binding to the steriod receptor (Dausse, Duval, Meyer, Gaignault, Marchandeau \& Raynaud, 1977; Harmon, Schmidt \& Thompson, 1981; Simons, Thompson \& Johnson, 1979; Steelman, Morgan \& Glitzer, 1971). Spence, Coghlan, Denton, Mills, Whitworth \& Scoggins (1986) confirmed that the 3-keto group is not essential for glucocorticoid activity if the remainder of the typical 4 -pregnene- 3,20 -dione nucleus is present. In addition, Thompson, Srivastava \& Johnson (1989) showed that cortivazol binds to glucocorticoid receptors. Since the cortivazol structural formulae and its activities are in direct contrast to the current concept of glucocorticoid structure/function, it was
decided to determine the crystal structure of cortivazol in order to establish a three-dimensional structural basis for its activity. In conjunction with the three-dimensional structures of dexamethasone (Rohrer \& Duax, 1977) and dexamethasone acetate (Terzis \& Theophanides, 1975), the additional threedimensional structural data of cortivazol may also provide some insight into the nature of the binding region of the glucocorticoid receptor.

Experimental. Colorless needle-shaped crystals (from ethanol), $\quad 0.08 \times 0.15 \times 0.90 \mathrm{~mm}$; Enraf-Nonius CAD-4 diffractometer, cell parameters from 2θ values for 25 reflections from least-squares refinement with $8<2 \theta<24^{\circ} ; \omega-2 \theta$ scan, width (0.80 $+0 \cdot 15 \tan \theta)^{\circ} ;[(\sin \theta) / \lambda]_{\max }=0.6097 \AA^{-1} ;-37 \leq h \leq$ 37, $-7 \leq k \leq 0,-18 \leq l \leq 8$; intensities of three standard reflections monitored every 3600 s showed neither radiation decay nor significant variation; 6053 total, 3003 unique reflections measured, 2415 reflections with $I>2.5 \sigma(I), R_{\text {int }}=0.043$; Lp corrections; structure solved by direct-methods program SHELXS86 (Sheldrick, 1985) modified for the IBM PC/AT microcomputer; full-matrix least squares minimizing $\sum w\left(F_{o}-F_{c}\right)^{2}, w=4 F_{o}^{2} / \sigma^{2}\left(F_{o}^{2}\right), \sigma^{2}\left(F_{o}^{2}\right)=$ $\left[\sigma_{o}^{2}\left(F_{o}^{2}\right)+\left(p F_{o}^{2}\right)^{2}\right], p=0.04 ;$ min. and max. absorption correction of 0.764 and 1.704 , respectively, using program DIFABS (Walker \& Stuart, 1983); final R $=0.047, w R=0.053$; all H atoms from ΔF map and refined isotropically; 504 total variables; secondaryextinction correction, $g=1.2(3) \times 10^{-6}$ (Stout \& Jensen, 1968); $S=1.317$, max. $\Delta / \sigma=0.04$ for non-H atoms, 0.08 for H atoms; no significant features in final ΔF synthesis with max. and min. $\Delta \rho=0.15$ (4) and -0.24 (4) e \AA^{-3}, respectively; atomic scattering factors, f^{\prime} and $f^{\prime \prime}$, from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.3.1); all refinement calculations with a DEC PDP 11/44 computer using the Enraf-Nonius SDP-Plus package (Frenz, 1985). Molecular modelling studies performed on the IBM PC/AT using the ALCHEMYII program (Tripos Associates, 1988).

Discussion. Table 1* lists the fractional atomic coordinates of the non-H atoms and isotropic thermal parameters. Table 2 shows the bond lengths, bond angles and torsion angles of the non- H atoms, which are within the range of expected values (Duax \& Norton, 1975; Griffin, Duax \& Weeks, 1984). Two orthogonal perspective views showing the structure

[^0]Table 1. Positional and equivalent isotropic thermal parameters

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Cl	0.20944 (8)	0.3842 (5)	$0 \cdot 2242$ (2)	4.77 (5)
C2	$0 \cdot 16972$ (8)	0.3981 (6)	0.2770 (2)	$5 \cdot 25$ (6)
C3	$0 \cdot 17012$ (8)	0.5370 (5)	0.3467 (2)	$5 \cdot 04$ (6)
C4	0.20648 (9)	0.6743 (6)	$0 \cdot 3710$ (2)	5.01 (6)
C5	0.23821 (8)	0.7020 (5)	0.3144 (2)	$4 \cdot 44$ (5)
C6	0.27475 (9)	0.8496 (6)	0.3340 (2)	$5 \cdot 35$ (6)
C7	$0 \cdot 30572$ (9)	0.8807 (5)	0.2773 (2)	$5 \cdot 24$ (6)
C8	$0 \cdot 30827$ (8)	0.7648 (5)	0.1924 (2)	$4 \cdot 22$ (5)
C9	0.28038 (7)	0.5606 (4)	0.1924 (2)	$3 \cdot 84$ (5)
C10	0.23370 (7)	0.600	$0 \cdot 2229$ (2)	3.99 (5)
C11	0.28336 (7)	0.4266 (5)	0.1084 (2)	4.38 (5)
011	0.25793 (5)	0.5281 (4)	0.0360 (1)	$5 \cdot 69$ (5)
C 12	0.33069 (7)	0.3869 (5)	0.0857 (2)	4.43 (5)
C13	0.35865 (7)	0.5909 (5)	0.0865 (2)	$4 \cdot 16$ (5)
C14	$0 \cdot 35522$ (8)	0.6982 (5)	0.1767 (2)	$4 \cdot 26$ (5)
C15	$0 \cdot 39167$ (8)	0.8656 (6)	0.1815 (2)	5.74 (7)
C16	0.42811 (8)	0.7716 (5)	0.1296 (2)	4.95 (6)
C17	0.40967 (7)	0.5587 (5)	0.0896 (2)	$4 \cdot 27$ (5)
017	0.41932 (5)	0.3750 (3)	0.1430 (1)	4.80 (4)
C18	$0 \cdot 34466$ (9)	0.7416 (6)	0.0096 (2)	$5 \cdot 59$ (6)
C19	$0 \cdot 20632$ (8)	0.7596 (5)	0.1649 (2)	4.55 (5)
C20	0.42459 (8)	0.5121 (5)	-0.0031 (2)	4.78 (6)
O 20	0.43663 (7)	0.6533 (4)	-0.0509 (1)	6.55 (5)
C21	0.42256 (8)	0.2828 (6)	-0.0349 (2)	5.70 (7)
022	0.42085 (5)	0.2766 (5)	-0.1285 (1)	6.31 (5)
C23	0.45896 (8)	0.2757 (6)	-0.1646 (2)	$5 \cdot 51$ (6)
023	0.49340 (6)	0.2647 (4)	-0.1224 (1)	6.01 (5)
C24	0.4539 (1)	0.290 (1)	-0.2619 (2)	8.2 (1)
C25	0.47141 (9)	0.7466 (6)	0.1839 (2)	6.32 (7)
C26	0.2763 (1)	0.9769 (8)	0.4181 (2)	$8 \cdot 29$ (9)
C27	0.1300 (1)	0.2901 (8)	0.2763 (2)	$7 \cdot 10$ (8)
N28	$0 \cdot 10636$ (8)	0.3554 (6)	0.3420 (2)	7.18 (7)
N29	$0 \cdot 13125$ (8)	0.5071 (5)	0.3845 (2)	5.86 (6)
C30	$0 \cdot 11446$ (9)	0.6123 (7)	0.4589 (2)	6.46 (8)
C31	0.1267 (1)	0.8166 (8)	$0 \cdot 4813$ (2)	$7 \cdot 50$ (9)
C32	0.1123 (1)	0.909 (1)	0.5584 (3)	10.4 (1)
C33	0.0857 (2)	0.793 (1)	0.6086 (3)	11.0 (1)
C34	0.0718 (1)	0.599 (1)	0.5832 (3)	10.7 (1)
C35	0.0867 (1)	0.4950 (9)	$0 \cdot 5090$ (2)	8.4 (1)

of the molecule are given in Fig. 1. The packing of the molecules is shown in Fig. 2. Most intermolecular distances correspond to normal van der Waals interactions. There is a single intermolecular hydrogen bond of 2.798 (3) \AA between the hydroxy 017 and the carbonyl O23 of the molecule at $1-x$, $y,-z$. There is a weak interaction, $3 \cdot 328$ (1) \AA, between the hydroxy Oll atom and the Oll of molecules at $\frac{1}{2}-x, y-\frac{1}{2},-z$ and at $\frac{1}{2}-x ; \frac{1}{2}+y,-z$. The only intramolecular interaction occurs between the carbonyl O atoms O 20 and O 23 [3.215 (4) \AA]. There are no other significant inter- or intramolecular contacts.

Steroid ring $A(\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 10)$ contains two double bonds and is fused to the planar pyrazole ring. The ring is not planar as C 1 is below (α) ($-0.273 \AA$) and Cl 10 is above $(\beta)(0.330 \AA$) the plane defined by C2, C3, C4 and C5. The asymmetry parameters defined by Duax \& Norton (1975) for ring A are $\Delta C_{2}^{1,10}=2 \cdot 7, \Delta C_{s}^{1}=22 \cdot 5$, and $\Delta C_{s}^{2}=$ $41 \cdot 1^{\circ} .\langle\tau\rangle$ is $21 \cdot 2^{\circ}$. The predominance of the rotational symmetry parameter indicates that the conformation of ring A is $1 \alpha, 10 \beta$-half-chair. Ring B (C5, C6, C7, C8, C9, C10) adopts a distorted half-chair conformation, largely because of the unsaturated

Table 2. Bond distances (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$

Cl	C2	1.508 (4)
Cl	C10	1.536 (4)
C2	C3	1.371 (5)
C2	C27	1.389 (5)
C3	C4	1.433 (5)
C3	N29	1.371 (4)
C4	C5	1.355 (4)
C5	C6	1.464 (4)
C5	C10	1.536 (4)
C6	C7	1.341 (4)
C6	C26	1.509 (5)
C7	C8	1.493 (4)
C8	C9	1.532 (4)
C8	C14	1.530 (4)
C9	C10	1.552 (3)
C9	Cl1	1.539 (4)
C10	C19	1.542 (4)
C11	Oll	1.455 (4)
Cl1	C 12	1.534 (4)
C12	C 13	1.532 (4)
C13	C14	1.543 (4)
C13	C17	1.573 (4)

C2	C 1	C10	111.4 (3)
Cl	C2	C3	$119 \cdot 2$ (3)
Cl	C2	C27	134.9 (3)
C3	C2	C27	$105 \cdot 9$ (3)
C2	C3	C4	$123 \cdot 0$ (2)
C2	C3	N29	$106 \cdot 2$ (3)
C4	C3	N29	$130 \cdot 8$ (3)
C3	C4	C5	119.3 (3)
C4	C5	C6	$121 \cdot 4$ (3)
C4	C5	C10	$120 \cdot 4$ (3)
C6	C5	C10	117.8 (2)
C5	C6	C7	121.6 (3)
C5	C6	C26	118.9 (3)
C7	C6	C26	119.5 (3)
C6	C7	C8	$125 \cdot 0$ (3)
C7	C8	C9	109.8 (2)
C7	C8	C14	111.8 (2)
C9	C8	C14	$107 \cdot 8$ (2)
C8	C9	Cl 0	$113 \cdot 2$ (2)
C8	C9	Cll	112.6 (2)
C10	C9	Cl 1	$116 \cdot 3$ (2)
Cl	C10	C5	$111 \cdot 4$ (2)
Cl	C10	C9	108.8 (2)
Cl	C10	C 19	$109 \cdot 1$ (3)
C5	C10	C9	108.1 (2)
C5	C10	C19	$105 \cdot 6$ (2)
C9	C10	C19	113.9 (2)
C9	C11	011	$110 \cdot 0$ (2)
C9	C11	Cl 2	112.8 (2)
011	C11	C 12	111.3 (2)
C11	C12	Cl 3	113.6 (2)
C 12	C13	C14	107.1 (2)
C12	Cl 3	C17	116.6 (2)
C12	C13	C18	111.9 (3)
C14	C13	C17	98.9 (2)
C14	C13	C18	112.7 (3)

C13	C18	$1.542(4)$
C14	C15	$1.526(4)$
C15	C16	$1.529(5)$
C16	C17	$1.551(5)$
C16	C25	$1.524(5)$
C17	O17	$1.425(3)$
C17	C22	$1.546(4)$
C20	O20	$1.216(4)$
C20	C21	$1.508(6)$
C21	O22	$1.428(4)$
O22	C23	$1.324(3)$
C23	O23	$1.200(3)$
C23	C24	$1.489(6)$
C27	N28	$1.341(5)$
N28	N29	$1.353(5)$
N29	C30	$1.438(5)$
C30	C31	$1.363(7)$
C30	C35	$1.390(7)$
C31	C32	$1.408(7)$
C32	C33	$1.36(1)$
C33	C34	$1.33(1)$
C34	C35	$1.41(1)$

Table 2 (cont.)

C4	C5	Cl 0	C19	$85 \cdot 0$ (3)	C 25	C16	C17	O 17	$33 \cdot 2$ (3)
C6	C5	Cl0	Cl	154.1 (2)	C25	C16	C17	C20	-91.2 (3)
C6	C5	Cl 10	C9	34.6 (3)	C13	C17	C20	O 20	93.1 (3)
C6	C5	C10	C19	-87.6 (3)	C13	C 17	C20	C21	-85.1 (3)
C5	C6	C7	C8	-3.4(5)	Cl 6	C 17	C 20	O 20	-23.0 (3)
C26	C6	C7	C8	179.5 (3)	C16	C17	C20	C21	158.8 (2)
C6	C7	C8	C9	-18.0 (4)	017	C 17	C 20	O20	- 150.5 (2)
C6	C7	C8	C14	-137.6 (3)	O17	C 17	C20	C21	31.4 (3)
C7	C8	C9	C10	48.4 (3)	C17	C 20	C21	O 22	157.8 (2)
C7	C8	C9	C11	-177.1 (2)	O20	C20	C21	O 22	-20.4 (3)
C14	C8	C9	Cl 10	170.4 (2)	C20	C21	O 22	C23	87.7 (3)
C14	C8	C9	Cll	-55.0 (2)	C21	O 22	C23	O 23	5.4 (5)
C7	C8	C14	C13	- 176.4 (2)	C21	022	C23	C24	-174.6 (4)
C7	C8	C14	C15	-53.6 (3)	C2	C27	N28	N29	0.3 (4)
C9	C8	C14	C13	62.8 (3)	C 27	N28	N29	C3	-0.3 (4)
C9	C8	C14	C15	-174.4 (2)	C27	N28	N29	C30	179.2 (3)
C8	C9	C10	C1	-177.6(2)	C3	N29	C30	C31	27.7 (5)
C8	C9	C10	C5	-56.5 (2)	C3	N29	C30	C35	-149.9 (3)
C8	C9	C10	C19	60.5 (2)	N28	N29	C30	C31	-151.7 (3)
Cl 11	C9	C 10	C1	49.6 (3)	N28	N29	C30	C35	$30 \cdot 8$ (4)
Cll	C9	C10	C5	170.7 (2)	N29	C30	C31	C32	-175.1 (3)
Cl 1	C9	C 10	C19	-72.4 (3)	C35	C30	C31	C32	2.4 (5)
C8	C9	C11	Oll	-75.1(2)	N29	C30	C35	C34	178.0 (3)
C8	C9	C11	C 12	49.6 (3)	C3I	C30	C35	C34	0.5 (5)
Cl 10	C9	Cll	Oll	57.9 (3)	C30	C31	C32	C33	-1.2 (6)
C10	C9	CII	C12	-177.3 (2)	C31	C32	C33	C34	-2.9 (7)
C9	C11	C 12	C13	49.6 (3)	C32	C33	C34	C35	$6 \cdot 1$ (8)
Oll	Cll	Cl 2	C13	74.4 (3)	C33	C34	C35	C30	-4.8(7)
C11	Cl 2	Cl 3	C14	54.1 (3)					

Fig. 1. Two orthogonal views of the molecular structure of cortivazol in the asymmetric unit showing the numbering scheme and the thermal vibration ellipsoids of the non-H atoms. The thick lines denote the double bonds.

Fig. 2. Stereoview along the b axis showing the molccular packing. Thin lines depict the hydrogen bond between OI7 and O23 of molecule at $1-x, y,-z$.

C4-C5 and C6-C7 bonds. C9 is below the C5-C6-C7-C8 plane ($-0.504 \AA$) and C10 is above by $0 \cdot 201 \AA$. The asymmetry parameters are $\Delta C_{2}^{6,7}=$ $12 \cdot 9, \Delta C_{s}{ }^{6}=12 \cdot 0$, and $\Delta C_{s}^{5}=42 \cdot 2^{\circ}$, with $\langle\tau\rangle=27 \cdot 8^{\circ}$. These data indicate that ring B is distorted from the $\mathrm{C} 9 \alpha, \mathrm{C} 10 \beta$ half-chair conformation ($\Delta C_{2}=0^{\circ}$) towards a $\mathrm{C} 9 \alpha$ sofa. Ring $C(\mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 13$, C14) does not have any unusual substituents and assumes the commonly found chair conformation $\left(\Delta C_{2}^{9,11}=5 \cdot 9, \Delta C_{s}^{11}=1 \cdot 2^{\circ},\langle\tau\rangle=55 \cdot 5^{\circ}\right)$. The D-ring (C13, C14, C15, C16, C17) pseudo-rotation parameter (Altona, Geise \& Romers, 1968), $\Delta=29.3^{\circ}$, is near that of a 13β envelope conformation ($\Delta=$ $35 \cdot 0^{\circ}$). This is consistent with the finding by Duax, Weeks \& Rohrer (1976) that the other steroid D rings which have all $s p^{3}$ hybrid C atoms have conformations between $13 \beta, 14 \alpha$ half-chair ($\Delta=0 \cdot 0^{\circ}$) and 13β envelope.
The conformation of the $\mathrm{C} 17 \beta$ acetylacetate side chain is unusual only in the $\mathrm{C} 20-\mathrm{C} 21-\mathrm{O} 22-\mathrm{C} 23$ torsion angle (Table 2). The positive torsion angle points the carbonyl O 23 in the direction of the hydroxyl O17 of the symmetry-related molecule to form the intermolecular hydrogen bond in an end-toend fashion in the crystal (Fig. 2). Of the ten pregnanes containing a 21 -acetate moiety tabulated in the Atlas of Steroid Structure (Duax \& Norton, 1975; Griffin et al., 1984), nine have a C20-C21-O22C23 torsion angle in the range -70.8 to $-106 \cdot 2^{\circ}$ (average $-84 \cdot 2 \pm 13 \cdot 7^{\circ}$). Only $4 \alpha, 6,7 \alpha$-trichloro-3,11,20-trioxo-5-pregnene-17,21-diol 21 -acetate has a positive $\mathrm{C} 20-\mathrm{C} 21-\mathrm{O} 22-\mathrm{C} 23$ torsion angle ($95 \cdot 0^{\circ}$) (Kierstead, Blount, Fahrenholtz, Faraone, LeMahieu \& Rosen, 1970; Griffin et al., 1984). The biological significance of this observation is probably not important as deacylcortivazol is as active biologically as cortivazol (Steelman et al., 1971; Dausse et al., 1977; Simons et al., 1979; Harmon et al., 1981).

The overall conformation of cortivazol is similar to the conformations of the only two phenylpyra-zole-substituted pregnadiene steroids whose crystal structures are known, $6 \alpha, 7 \alpha$-difluoromethylene$11 \beta, 17 \alpha, 21$-trihydroxy-16 α-methyl-2'-phenyl-2' H -pregna-2,4-dieno[3,2-c]pyrazol-20-one 21 - $(p$-bromobenzoate) (Christensen, 1970) (I), and $6 \alpha, 7 \alpha$-diflu-oromethylene-11 $\beta, 21$-dihydroxy-16 $\alpha, 17 \alpha$-isopropyli-denedioxy-16 α-methyl-2'-phenyl-2' H-pregna-2,4-dieno[3,2-c]pyrazol-20-one 21-(p-bromobenzoate) (Thom \& Christensen, 1971) (II). The $6 \alpha, 7 \alpha$-difluoromethylene groups on these two compounds constrain ring B in a manner analogous to the Δ^{6} bond in cortivazol. The planarity of cortivazol is also evident in the twist about a line joining C 10 and C 13 , described by the 'torsion angle' $\mathrm{C} 19-\mathrm{Cl} 0-\mathrm{Cl3}-$ C18. This 'torsion angle' of cortivazol is $-2.7(3)^{\circ}$, which is nearly the same as that in (II) $\left(-2.8^{\circ}\right)$, but significantly different from the twist in compound (I)
$\left(-7.8^{\circ}\right)$. This is somewhat unexpected since (I) has the same substituents on ring D as cortivazol, and (II) has the additional constraint on ring D with the presence of the $16 \alpha, 17 \alpha$-isopropylidenedioxy group, which presumably conforms ring D to a distorted 14α envelope. The ring-junction configurations of these three compounds are the same, A / B quasitrans, B / C and C / D trans and the magnitudes of these torsion angles are within five degrees of each other (Table 2) (Duax \& Norton, 1975).

(I)

(II)

The plane of the benzene ring makes a dihedral angle of $28.9(3)^{\circ}$ with the plane of the pyrazole ring. The benzene ring in (I) and (II) makes dihedral angles of 53.6 and 48.6°, respectively. These differences are probably a manifestation of the crystalpacking forces as these three compounds crystallize in different space groups and there are no energetic barriers in this region of rotation about the N benzene bond.

However, cortivazol is less bowed toward the α face than either of these two molecules with less than half the angle found in dexamethasone and its acetate derivative. The bowing of the A ring in relation to the least-squares plane of atoms C5 through C 17 is -15.0° in the case of cortivazol, -18.4° for (I), -22.7° for (II) and ca 39° for dexamethasone and its acetate derivative. The pyrazole ring is planar within experimental error. The trigonal N 29 of the pyrazole ring bonded to C3 is analogous to the O3 keto usually found in glucocorticoids. The pyrazole ring makes an angle of $6.4(8)^{\circ}$ with the $\mathrm{C} 5-\mathrm{C} 17$ least-squares plane. This is in sharp contrast to the 16.0 and 16.7° angles found in (I) and (II). The differences between the torsion angles $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 27-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 29$ of cortivazol and (I) and (II) are $1 \cdot 3,0 \cdot 1 ; 8 \cdot 2,1 \cdot 0$; and $5 \cdot 2,-1 \cdot 6^{\circ}$, respectively. The angles made by ring A with the least-squares plane of atoms C5 through C17 of cortivazol, (I), (II), dexamethasone and its acetate derivative, result in the corresponding O 3 or N29 being $-0.770,-0.87,-1.45,-2.19$ and $-2.47 \AA$, respectively, below the C5 through C17
least-squares plane. The decrease in the bowing angle of cortivazol compared to the dexamethasones, which are less active than cortivazol, contradicts the proposal made by Weeks, Duax \& Wolff (1973) that increasing the angle made by ring A with the leastsquares plane of C 5 through C17 increases the antiinflammatory activity. Furthermore, the benzene ring is bonded to N29 which would sterically interfere with any binding. Thus, it is not likely that the $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ edge of the A-ring portion of the glucocorticoids is important for binding or activity. The β face of rings B, C and D of the glucocorticoids is, for the most part, the same and may be an important factor in binding of the molecule to the glucocorticoid receptor. The remaining portion of the glucocorticoids which may be responsible for differences in glucocorticoid activity is the α-face side of the B, C and D rings. Cortivazol is structurally nearly identical to the phenylpyrazole compounds (I) and (II) and yet functionally similar to dexamethasone. Even though there are some significant differences between the cortivazol and dexamethasone structures, most notably the presence of the F9 atom in the dexamethasones and the phenylpyrazole in cortivazol, the conformations of rings C and D are nearly identical. Fitting the nine C atoms of rings C and D of cortivazol to the corresponding atoms of dexamethasone acetate and compounds (I) and (II) results in r.m.s. values of $0.031,0.046$ and $0.104 \AA$, respectively. The positional differences of C 13 and the $\mathrm{C} 18 \beta$ methyl group are less than the corresponding r.m.s. values when fitted to cortivazol. However, Cl 0 and the $\mathrm{C} 19 \beta$ methyl group differ by ca 0.2 and $0.3 \AA$, respectively. Thus, the twists of the glucocorticoids as measured by the $\mathrm{C} 19-\mathrm{C} 10-\mathrm{C} 13-\mathrm{C} 18$ 'torsion angle' of cortivazol, dexamethasone acetate and compounds (I) and (II) are $-1 \cdot 3,1 \cdot 4,-7.8$ and $-2 \cdot 8^{\circ}$, respectively. The result is that the C19 β methyl and the O11 β hydroxyl groups have different spatial relationships of each glucocorticoid to the receptor. It is plausible that it is the common elements and their spatial relationships of these glucocorticoid structures which impart the recognition signal to the glucocorticoid receptor for binding. Since rings C and D of cortivazol and (I) are conformationally nearly the same, then (I) may also have similar biological functions. The C16 methyl and O17 hydroxyl groups are replaced by a $16 \alpha, 17 \alpha$ isopropylidenedioxy moiety in (II), which should sterically block the α face, thus potentially preventing binding to the receptor. However, the potent glucocorticoid, triamcinoloneacetonide (9α-fluoro$11 \beta, 21$-dihydroxy-16 $\alpha, 17 \alpha$-isopropylidenedioxy-1,4-pregnadien-3,20-dione), has the same moieties at C16 and C17 in the same orientation (Surcouf, 1979). This leaves the α and β faces of rings B and C and the molecular edge composed of atoms $\mathrm{C} 6-\mathrm{C} 7-$

C8-C14-C15 to supply the recognition signal to the glucocorticoid receptor for binding. The testing of compounds (I) and (II) in binding to the glucocorticoid receptor in conjunction with the threedimensional structure of triamcinolone acetate should resolve this question of the importance of the free access of portions of the α and β faces for glucocorticoid activity.

The cortivazol was a gift from Dr E. Brad Thompson, Department of Human Biological Chemistry and Genetics, The University of Texas Medical Branch. The sample was originally synthesized and provided to Dr Thompson through the kind offices of Dr J.-P. Raynaud, Roussel-Uclaf Corporation. The author is indebted to Dr S. Simons of the National Institutes of Health for his critical reading of the manuscript and most helpful comments.

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 34, 13-32.
Christensen, A. T. (1970). Acta Cryst. B26, 1519-1527.
Dausse, J. P., Duval, D., Meyer, P., Gaignault, J. C., Marchandeau, C. \& Raynaud, J. P. (1977). Mol. Pharmacol. 13, 948-955.
Duax, W. L., Griffin, J. F., Weeks, C. M. \& Wawrzak, Z. (1988). J. Steroid Biochem. 31, 481-492.

Duax, W. L. \& Norton, D. A. (1975). In Atlas of Steroid Structure, Vol. 1, edited by W. L. Duax \& D. A. Norton. New York: Plenum Press.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel \& N. Allinger, pp. 271-283. New York: John Wiley.

Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Goldstein, A., Aronow, L. \& Kalman, S. M. (1974). Principles of Drug Action: The Basis of Pharmacology, 2nd ed., pp. 36-39. New York: Wiley
Griffin, J. F., Duax, W. L. \& Weeks, C. M. (1984). In Allas of Steroid Structure, Vol. 2, edited by J. F. Griffin, W. L. Duax \& C. M. Weeks. New York: Plenum Press.
Harmon, J. M., Schmidt, T. J. \& Thompson, E. B. (1981). J. Steroid Biochem. 14, 273-279.
Kierstead, R. W., Blount, J., Fahrenholtz, K. E., Faraone, A., Lemahieu, R. A. \& Rosen, P. (1970). J. Org. Chem. 35, 4141-4145.
Liddle, G. W. (1974). Textbook of Endocrinology, Part I, The Adrenal Cortex, edited by R. H. Willams, p. 246. Lippincott, PA: W. B. Saunders.
Rohrer, D. C. \& Duax, W. L. (1977). Cryst. Struct. Commun. 6, 123-126.
Sheldrick, G. M. (1985). Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Simons, S. S. Jr, Thompson, E. B. \& Johnson, D. F. (1979). Biochem. Biophys. Res. Commun. 86, 793-800.
Spence, C. D., Coghlan, J. P., Denton, D. A., Mills, E. H., Whitworth, J. A. \& Scoggins, B. A. (1986). J. Steroid Biochem. 25, 411-415.
Steelman, S. L., Morgan, E. R. \& Glitzer, M. S. (1971). Steroids, 18, 129-139.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination. New York: MacMillan.
Surcouf, E. (1979). Acta Cryst. B35, 2638-2642.
Terzis, A. \& Theophanides, T. (1975). Acta Cryst. B31, 796-801.
Thom, E. \& Christensen, A. T. (1971). Acta Cryst. B27, 573-581.
Thompson, E. B., Srivastava, D. \& Johnson, B. H. (1989). Cancer Res. 49, 2253s-2258s.
Tripos Associates (1988). ALCHEMYII. Tripos Associates, St Louis, Missouri, USA.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Weeks, C. M., Duax, W. L. \& Wolff, M. E. (1973). J. Am. Chem. Soc. 95, 2865-2868.

X-ray Studies on Crystalline Complexes Involving Amino Acids and Peptides. XXI. Structure of a (1:1) Complex Between L-Phenylalanine and D-Valine

By G. Sridhar Prasad and M. Vijayan
Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India

(Received 4 February 1991; accepted 30 May 1991)

Abstract

C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}, M_{r}=282 \cdot 3, \mathrm{Pl}, a=\) $5 \cdot 245$ (1), $\quad b=5 \cdot 424$ (1),$\quad c=14.414$ (2) $\AA, \quad \alpha=$ 97.86 (1), $\beta=93.69$ (2), $\gamma=70.48$ (2) ${ }^{\circ}, V=356 \AA^{3}$, $Z=1, D_{m}=1.32(2), D_{x}=1.32 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)$ $=0.7107 \AA, \mu=5.9 \mathrm{~cm}^{-1}, F(000)=158, T=298 \mathrm{~K}$, $R=0.035$ for 1518 observed reflections with $I>$ $2 \sigma(I)$. The molecules aggregate in double layers, one

layer made up of l-phenylalanine molecules and the other of D-valine molecules. Each double layer is stabilized by interactions involving main-chain atoms of both types of molecules. The interactions include hydrogen bonds which give rise to two head-to-tail sequences. The arrangement of molecules in the complex is almost the same as that in the structure of

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates, bond lengths and angles involving H atoms, torsion angles and least-squares-planes calculations have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54295 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

